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ABSTRACT  
In future tactical environments, situational awareness will require fusion of data from sensors distributed across 
the battle domain, while computing resource access and network bandwidth are likely to be limited. We consider 
this problem as the ultimate limit of edge computing for sensor fusion analytics, in which AI calculations used 
for data fusion will also need to be distributed, employing every usable device on the network. In abstract, this 
maps to an optimal graph embedding problem (OGEP), with a logical graph embedded within a physical graph. 
The nodes and edges of the logical graph consist, respectively, of the compute components of distributed AI 
calculations and the associated communications needed for data collection and transfer. The nodes of the 
physical graph consist of sensors, available computing resources, and other data source, while communications 
links act as the physical graph edges. In this scenario, the distribution of tasks performed within a sensor fusion 
engine could span regions of the physical graph, with (possibly momentarily) fixed sensor and data resources 
and “agile” compute tasks and communications. In our model, we treat the interactions between nodes in each 
graph as particles, interacting like atoms in a molecular simulation. Because the available devices will likely 
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have heterogeneous capabilities, we balance logical node placement through use of Coulomb-like forces, with 
charges determined by resource needs on the logical graph and available resources on the physical graph. We 
introduce the balanced utilization index (BUI), an adaptation of Jains Fairness Index, to measure this balance. 
Spring-like forces, based on the physical properties of wireless networking protocols, capture the energy cost of 
communications. Based on these properties we define an objective function that, when minimized, 
simultaneously minimizes the communications cost while maximizing the BUI. Although the OGEP is generally 
intractable, with a highly non-convex solution space, we have developed a simulated annealing method that 
rapidly and reliably obtains good solutions from the set of local optima of this objective function. We 
demonstrate this through simulation of an abstract model of a sensor fusion engine, combining data from 
collocated and distributed sensors, incorporating other analysis data. 

1.0 INTRODUCTION 

The battlefield of the future will be composed of millions of networked devices,1 ranging from fixed, 
independent sensors to soldier-carried radios to components of large vehicles to high-performance computers. 
Fusion and analysis of both small-sample and large-volume data will be essential to understanding the flow of 
the battle from local situational awareness to global strategy. In the commercial setting, such analysis is typically 
performed via workstation- or data-centre-class computing hardware, either on-platform, such as in self-driving 
cars, or in large data centres. An alternative model is edge (or “fog”) computing, which proposes to take 
advantage of the general growth of available computing power on devices and/or on the network.2 While there 
are a variety of models for edge computing, we consider a model in which all processing capacity on a local 
network can be tapped to create a distributed large-scale computer. In the tactical environment, this model of 
edge computing would facilitate flexibility and robustness, which may be necessary, given the uncertainty of 
device operability and communications reliability, and general latency of communications of data over distances. 

As simple example, we consider an array of cameras, microphones and similar sensors used in a security or 
surveillance application. The devices would built on a cheap, cell-phone-like platform, including a radio (e.g. 
Wi-Fi), a processor, small amounts of RAM and persistent storage, a battery and a solar cell. In data fusion 
applications the devices would include different sensor types and support hardware, making the computing 
system heterogeneous. In addition, for any given event of interest, it is likely that the system load will be non-
uniform, with one to a few sensors being primarily engaged. Varying sunlight exposure, battery capacity and 
system power requirements would cause the available energy for processing and communications to be non-
uniform as well. The robustness of such a system will depend on the distributed algorithms that coordinate the 
analytics: any given node of the system might fail, run out of energy, or be subject to a physical or malicious 
attackers, but the system should still be able to perform the needed analytics. Furthermore, it would be helpful to 
balance usage so that each device can remain available for sensing, reducing congestion of network and/or 
compute resources, etc., for as long as possible. 

In this paper we address the problem of the load-balancing of multi-sensor fusion analytics as a placement 
problem of the component compute tasks on such a distributed wireless network. The hardware networking and 
compute nodes can be treated abstractly as a physical graph, with hardware represented by graph nodes and 
communications connections by graph edges. Similarly, we represent the analytics calculation by a directed, 
acyclic logical graph, in which separate data input and analysis stages are represented by nodes, while data 
transfers are represented by edges. Thus, the problem of distributing the data fusion calculation on the network 
of devices is rendered as an optimal graph embedding problem (OGEP), which is typically intractable.3,4 Our 
approach uses a particle-based formulation, inspired by molecular modelling, which has been well-studied and is 
amenable to a distributed solution. This problem solution is based using two key components. 1. Interactions 
between resource types, physical and logical, are inspired by physics-like interactions, such as spring forces for 
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communications and Coulomb-like forces to balance the distribution of code and data “particles”. 2. An 
objective function is defined and optimized using simulated annealing (SA),5 based on the Metropolis Monte 
Carlo (MMC) 

method commonly used for atomic-scale simulation,6,7 denoted below as MMCSA. 

The use of physics models and physics-inspired models for network optimization has been addressed by a 
number of groups.8 For example, Adamic et al.9 have demonstrated that power-law graphs can enhance search 
algorithms for networks that include a few nodes with a high degree of connectivity. More recently, Yeung et al. 
have solved the network mapping problem for sparse graphs using statistical physics approaches.10 However, 
none of these approaches use such physics-inspired formulations for distributed analytics placement. In recent 
work,11 we considered a simplified version of the present problem and evaluated the efficacy of three types of 
physical forces to model the movement of agile code and data objects, namely gravity, elastic and a Coulomb-
like interaction. While each has its pros and cons in modelling our problem, in our previous work we only 
applied them individually and not together. In a follow-up paper,12 we expanded this formulation, applying both 
the elastic and the Coulomb-like force models simultaneously, as done in molecular modelling, and 
demonstrated its use in a simple sensing problem. In the present paper, we apply this to the multisensor fusion 
problem, with the MMCSA method used to find optimal embeddings of the logical graph. 

The balance of the paper is structured as follows. In section 2 we briefly discuss how the MMCSA method given 
here balances resource utilization and how we determine trade-offs between minimization of energy usage and 
load balancing of the devices. In the third section we give show and application of this method to a data fusion 
problem. We conclude with a discussion of future directions for this research. 

2.0 METHODOLOGY 

Here we give a brief overview of the method employed. The notation is similar to that found in ref. [12], to 
which we refer the reader for further details. We define the logical (analytics) graph G = (VA,EA,q,r,ωAE), 
composed of nodes/vertices VA and edges EA, with weights q : VA →R+, r : VA →R+, ωAE : VA×VA →R≥0, 
set respectively as the constant processing energy cost of each analytics stage, RAM requirement of each 
analytics stage and the directed data transmission (in megabytes) between each pair analytics stages (the 
majority of which will be zero). Similarly, we define the physical (resource) graph H = (VP,EP,Q,R,ωPE), 
composed of composed of nodes/vertices VP and edges EP, with weights R : VP →R−, Q : VP →R−, ωPE : VP 
×VP →R+, set respectively as the processing energy capacities and RAM of each physical node and the data 
transmission cost (in Joules per megabyte) between physical nodes. The placements of individual logical nodes 
on the physical graph are given by π : VA → VP, and are updated throughout the calculation. 

We employ an objective function consisting of three primary terms, 

Φ = Φcomms + cproc Φproc + cRAM ΦRAM , (1) 

where Φcomms is the energy associated with internodal communications, Φproc is a term that both constrains 
and balances the processing energy cost for each stage of the analytics, and ΦRAM is a penalty term associated 
with ensuring that the available memory on a given node is not exceeded by the assigned stages of the analysis. 
The constants cproc and cRAM are tuning parameters used to alter the relative importance of the three primary 
terms, combining them into a numerical objective for optimization. In our previous work,12 we found that there 
is a limited range over which this tuning is necessary, especially for cRAM, which effectively acts as a binary 
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check to ensure that the memory constraint is satisfied. 

We employ MMCSA to obtain the set of placements on the nodes of the physical graph that minimize the 
objective function Φ. Following standard MMCSA procedure (algorithm 1), we employ a temperature τ, which 
follows a cooling schedule. Because the system is not physical motivated, τ and the cooling schedule are selected 
based on the scenario under consideration. In the current implementation we employ an exponential function for 
τ that decays from τinit at s = 0 (initialization) to τmin at the MC step s = smax. At each MC step s, a logical 
node is chosen at random and subjected to a trial move on the physical graph. With each trial move, if the 
change ∆Φ is negative, the trial is accepted automatically. If ∆Φ is positive it is accepted if exp(−∆Φ/τ) > 
rand(0,1). 

The evolution of the system during the MMCSA method is the search for the optimal solution and not the actual 
evolution of the system, so it is only important that the soft constraints, handled by the penalty terms Φproc and 
ΦRAM, are not violated in the final solution. It is often beneficial during the MMCSA calculation that both the 
RAM and processing energy capacities are exceeded early in the calculation, when values of τ are high, to 
discourage trapping of the solution in a less-optimal, local minimum. Naturally, the choice of cooling schedule 
τ(s) determines the quality of the final configurations obtained by the MMCSA calculations, while sensible 
initial placements of the logical graph nodes on the physical graph can decrease the number of iterations 
required. 

The present implementation optimizes processing load through the use of Coulomb-like interactions in Φproc 
that simultaneously act as penalty functions to ensure the analytics placement does not exceed (violate) the 
processing energy capacity of any given physical node. While the standard fairness measure, Jain’s Fairness 
Index (JFI),13 is an appropriate measure for homogeneous resources, it does not address the case of 
heterogeneous resources. To measure this, we employ an adaptation of JFI, which we call the balanced 
utilization index (BUI), introduced in.12 In short, like JFI, the minimum and maximum values of the BUI lie 
between 0 and 1, with the specific, possible minimum and maximum values depending on the specific problem. 
A higher value denotes a more favourable balance. 

Algorim 1: MMCSA 
MMC method for optimizing “logical” graph placement on a “physical” graph. The algorithm is MMC 

for a fixed τ and MMCSA for τ that varies with s. 

 
1: Set physical graph within a 2D Euclidean space. 
2: Embed logical graph(s) in physical graph, with intermediate nodes distributed evenly between endpoints. 
3: Calculate Φ for initial configuration. 
4: for s = 1 : smax do 
5: Randomly choose loical graph node u. 
6: Displace node u from physical graph node z to trial node z0. 
7: Compute ∆Φ ← Φ(π(u) = z0) − Φ(π(u) = z). 
8: if ∆Φ < 0 then  
9: Set a ← True. 

10: else if e−∆Φ/τ(s) > rand(0,1) then 
11: Set a ← True 
12: else 
13: Set a ← False 
14: end if 
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15: if a then 
16: Φ ← Φ + ∆Φ 
17: π(u) ← z0 
18: end if 
19: Record data 
20: end for  
return Placement of logical graph nodes {π(u)}. 

 

3.0 APPLICATION TO THE MULTISENSOR FUSION PROBLEM 

Here we demonstrate the operation of the method on an information fusion problem employing a combination of 
interpretations data fusion approach (i.e. the individual inputs are classified first, followed by analysis of 
information). For the logical graph, we simulate the distributed use of five instances of the AlexNet image 
processing algorithm,14 with the 10 layers of the algorithm distributed on separate nodes of the logical graph. 
The results of these analyses are then fused via an abstract, 4-stage algorithm. The initial and final points of the 
logical graph are fixed on the physical graph, representing a observing sensors and a designated node for 
transmission from the network to an outside observer; the intermediate nodes of the logical graph are moved by 
the MMCSA method. The energy costs are based on 100 evaluations of AlexNet on a Samsung Galaxy S5 
smartphone, though with the RAM limited to 256MB per node. For communications, we define the Euclidean 
positions of the physical nodes and determine  based on the Euclidean distances between the nodes with 
the energy costs derived from the minimum multi-hop energy costs under the 802.11ac 20MHz DS 2x2 MIMO 
wireless spec, as measured by Saha et al.15 Numerical experiments demonstrate that with this configuration, the 
parameters employed within the MMCSA method can be readily determined and are robust across different 
physical configurations. In order to demonstrate the efficacy of the MMCSA method in balancing resource 
utilization, the processing energy capacities of physical nodes were chosen to be non-uniform and represent a 
system with sufficient resources to process on the order of seven sets of images, representing a system that is 
near its loading capacity. To define the physical graph, we use a geometric random graph with 80 nodes, 
distributed in four square kilometres. 

In figure 1 we show schematics of the processing energy and RAM for the initial (s = 0) and final (s = 20000) 
configurations, as well as one intermediate configuration (s = 8000). The initial condition was chosen to lie on a 
short path between the initial and final positions, with the analytics positioned along this path. The areas of blue 
left-semicircles are proportional to the available capacity for RAM or processing energy for the physical node 
located at the semicircle’s origin. The areas of the opposing, right-semicircles represent the size-proportional 
utilization. These are coloured red at nodes that violate the capacities and green at those that are within capacity. 
The grey lines connecting the physical nodes show the available Wi-Fi connections, based on the distances 
employed in . The heavy coloured lines show which connections are used for communications by the 
distributed analytics calculation, with different colors for distinct analytics calculations. A circle represents the 
point where the sensor makes an observation, and thus starts a calculation, while process communications are 
represented by the heavy lines of the same color. The black triangle is the point where the individual images are 
completed and passed to the fusion engine, while the black square is the point where the final analysis is 
delivered. The initial placement of logical nodes distributes the nodes as uniformly as possible along the lowest-
cost communications pathway between the observation point and the final point. As can be seen in the 
schematics in figure 1, the initial placements contain violations of both the processing energy and RAM 
capacities. After running the MMCSA algorithm the placements satisfy the capacities on the system. In figure 2 
we show the evolution of Ecomms and the BUI of the processing energy as a function of the MMCSA iteration 
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number. Thus both the communications energy and the BUI have relatively small initial values. The cooling 
schedule is a simple, decaying exponential. Thus, the both quantities quickly increase and fluctuate wildly in the 
initial “high-temperature” portion of the annealing. As the temperature decreases, the primary contributions to 
the objective function become fixed, followed by the lesser contributions. 

 

Figure 1: Evolution of placement solution for fusion of data from 5 sensors Schematics showing the 
available resources on the physical graph and utilization by analytics on the logical graph for 
experiment 1. Blue left-semicircles represent the capacity at each physical node. Red right-

semicircles represent a utilization that is over capacity, while green right-semicircles represent a 
utilization that is within capacity. The areas of the semicircles are proportional to the 



 
 

Physics-Inspired Placement of Analytics Services 
on Heterogeneous Resources for Multisensor Fusion 

STO-MP-SET-262 11 - 7 

capacity/utilization, illustrating the actual utilization. The value of s denotes the iteration number. 

 

Figure 2: Evolution of metrics with MMCSA step. 
Plot of communications energy (blue) and BUI of the processing energy (red), as a function of 

iteration number. 

4.0 CONCLUSION AND FUTURE WORK 

In this paper we have demonstrated a physics-inspired MMCSA algorithm to optimize on a random network of 
compute nodes the distribution of analysis components of a data fusion engine. This is done by formulating the 
problem as an OGEP problem and designing the objective function to employ penalty functions to enforce 
system capacities and balance system utilization. We employed the balanced utilization index (BUI), an 
extension of Jain’s Fairness Index, as a metric of how well different placements balance the remaining energy 
for processing, after the analytics calculations are completed. 

In the future, we anticipate that the performance of the method, both in terms of decreasing the number of 
iterations required and the optimality of solutions, could be improved by choosing more complicated cooling 
schedules and/or by using an energy window for MMC acceptance steps, rather than a threshold. For example, at 
large τ, many of the early placement fluctuations are of logical stages that would still move at lower values of τ, 
potentially leading to more-expensive communications, while not significantly improving the final BUI solution. 
Finally, we anticipate that with a modified objective function, this method could be applied to the optimization 
other network topologies, including those of heterogeneous computing platforms employed for largescale 
machine-learning calculations, such as those composed of many CPUs and GPUs. 
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